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We have briefly reviewed the idea of studies aiming at such a bridging of the methodologi-
cal gap between ab initio methods (or wave function theory (WFT)) and density functional
theory (DFT) that would afford carrying over results concerning details of the structure of
correlation effects from one method to the other. Special attention is paid to the problem of
coverage of the WFT correlation effects by the exchange-correlation functionals of DFT. A
short survey of the concept of supplementing energy-based investigations in this field by
electron-density-based studies is given and illustrated by results for the Ne atom. DFT densi-
ties are generated for representatives of all four generations of presently used exchange-
correlation functionals, including the recently developed orbital-dependent one. These den-
sities are compared with WFT densities calculated at the MP2, MP3, and Brueckner determi-
nant levels. It is found that the exchange-only parts of the local, gradient-corrected, and hy-
brid functionals account for the bulk of WFT correlation effects. The impact of the associ-
ated correlation functionals is very small and their physical nature is not quite clear. The sit-
uation is different for the orbital-dependent functional for which the exchange-only func-
tional provides an almost exact description of the Hartree–Fock density. Here, the correla-
tion effects are entirely represented by the correlation functional. Attention is also paid to
the suitability of Kohn–Sham orbitals for the description of WFT correlation effects and to
their presumptive similarity with Brueckner orbitals.
Keywords: Electron correlation; Ab initio methods; DFT methods; Electron density distribu-
tion; Radial electron density; Brueckner coupled-cluster method; Brueckner orbitals;
Kohn–Sham orbitals; Exchange-correlation functionals; Exchange-only functionals; Subspace
similarity indices.
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During the last decade, the experts in both the main categories of contem-
porary many-electron theory – the wave function theory (WFT), based on the
concept of the wave function, and the density functional theory1–3 (DFT),
based on the concept of electron density distribution have demonstrated an
increasing tendency to join their efforts in overcoming problems related to
the proper description of electron correlation effects. In WFT the problem
consists in the lack of accurate post-Hartree–Fock methods that could be ef-
ficiently applied to larger systems, whereas in DFT, the difficulties arise
from the lack of knowledge of the functionals correctly accounting for the
effects of electron interaction on the electron distribution.

Further progress in many-electron theory would require intensification of
the WFT-DFT collaboration both on the fundamental level, involving fur-
ther studies on the mathematical and physical foundations of both meth-
ods, and on the practical (computational) level consisting in using methods
of either of the two categories to improve the computational efficiency
and/or reliability of the methods.

Among the well known examples of WFT-DFT collaboration on the com-
putational level let us just mention: (i) Using accurate ab initio WFT ener-
gies, densities and other molecular properties in reliability studies (see, e.g.,
refs4–-6) and for calibration of approximate density functionals (see refs7,8);
(ii) Development of “third-generation-DFT” approaches9–12 (“orbital de-
pendent DFT”, “ab initio DFT”). The basic idea of this approach is to take an
exchange-correlation energy expression derived in the ab initio WFT and
use it as an explicitly orbital-dependent exchange correlation functional
(xc-functional) in DFT. This universal and parameter-free methodology al-
lows one to directly exploit knowledge from WFT and systematically im-
prove xc-potentials in the Kohn–Sham (KS) DFT scheme. Moreover, the
functionals obtained are free of self-interaction; (iii) Studies of the useful-
ness of Kohn–Sham orbitals (KSOs) for improving the performance of stan-
dard WFT methods in calculations of correlation energies. The outcome of
these investigations is not unique. In addition to rather pessimistic opin-
ions on the usefulness of KSOs (see, e.g., refs13,14), there are also several op-
timistic ones (see, e.g., refs15,16).

An interesting conjecture that KSOs may be close to Brueckner orbitals
(BOs), which are well approximated by Brueckner coupled-cluster (BCC)
orbitals17–19, has been made by Heßelmann and Jansen in their article on
intermolecular first-order interaction energies20. Inspired by this idea,
Lindgren and Salomonson21 have set up a new model referred to as the
Brueckner–Kohn–Sham (BKS) scheme in which the electron correlation ef-
fects are accounted for by means of a nonlocal exchange correlation poten-

Collect. Czech. Chem. Commun. (Vol. 70) (2005)

1158 Jankowski et al.:



tial similar to that defining the BCC orbitals. These authors have argued
that also the DFT orbitals from standard KS schemes are close to Brueckner
orbitals. The usefulness of KSOs in the description of intramolecular corre-
lation effects in calculations of first-order interaction energies has been in-
dependently confirmed by Misquitta and Szalewicz22 and by Heßelmann
and Jansen23. Both groups, however, have emphasized that the prerequisite
for efficiency seems to be that the KS orbitals considered correspond to as-
ymptotically correct xc-potentials, which might suggest that only some of
the widely used KSOs resemble the BOs. This suggestion has been con-
firmed in recent studies of the present authors24,25. Let us mention that the
interest in applying KSOs to the description of correlation effects in WFT
approaches is stimulated by the prospects of enormous savings in the com-
putational effort, e.g., it is much cheaper to obtain KSOs than BCC orbitals.
It seems, however, that a prerequisite for purposeful applications of KSOs in
ab initio approaches is a rather detailed understanding of the “physical real-
ity” of ab initio correlation effects represented by the structure of orbitals
corresponding to individual types of xc-potentials.

The identification of methodologically equivalent levels of description of
correlation effects in WFT and DFT is a difficult task because these effects
are differently defined in both theories. A very instructive discussion of
these differences together with many references to the relevant literature
can be found, e.g., in the articles by Gross et al.26 and Filippi et al.27 It is
important to remember that exchange and correlation functionals were
originally designed to describe all electron correlation effects (including
Fermi correlation) in an electron system, but not to give an accurate sepa-
rate account of exchange and correlation. However, to get a better compre-
hension of the way electron correlation is covered by DFT, correlation
functionals (c-functionals) are often discussed separately.

There have been many endeavors at finding connections between the
widely used methods of describing electron correlation effects within the
frameworks of DFT and WFT. Most of these attempts have been based on
comparisons of various energy increments such as the exchange, correla-
tion, and, first of all, the total energies (for details and many references, see,
e.g., refs8,28). Much less attention has been paid to comparative investiga-
tions directly based on the electron density distributions, which seem to
highlight additional aspects of the electron correlation problem than do
the energy-based studies.

Such expectations are based on the fact that, when using the language of
the configuration interaction method, the role of the individual configura-
tions for densities is different than for the energy contributions. As was
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found by H. Meyer et al.29, when going from the correlation energy to the
correlation density, the dominating role of the double excitations is re-
duced from ≈90–95% to ≈20–50%, whereas the importance of single excita-
tions is strongly enhanced, from ≈1% to ≈30–60%. Another demonstration
of the dominating effect of single excitations on correlated densities,
closely related to the present research, is the finding by van Heusden et
al.30 These authors have shown that the densities corresponding to the BOs
represented by BCC orbitals, i.e., the total densities corresponding to the
Brueckner determinants, are qualitatively similar to the response densities
obtained at the Brueckner-coupled-cluster level, which means that they in-
clude the majority of effects important for correlated densities.

Taking into account the different perspectives of energy- and density-
based approaches, comparison of the DFT results for density distributions
with their WFT counterparts should provide a valuable insight into physi-
cal consequences of using various functionals and, possibly, provide infor-
mation helpful for the systematic improvement of DFT functionals. Such
investigations were pioneered by Krijn and Feil31 who studied the impact of
various standard approximations to exchange and correlation functionals
on the electron density distribution. For atoms they found that, unlike the
energies, the response of the electron density to correlation is only qualita-
tively reproduced by the functionals considered. The effect of various DFT
methods on the electron charge distribution in molecules and atoms
(treated within the atoms-in-molecules approach) was afterwards studied by
Laidig32. Recently, the potentiality inherent in density distribution studies
of the correlation effects accounted for by DFT functionals has been suc-
cessfully exploited by Cremer, Kraka, and He33,34. For several molecules,
these authors have undertaken very comprehensive studies comparing the
densities obtained for a number of exchange-correlation and exchange-only
functionals with their WFT counterparts obtained by means of several
purposely chosen methods including the highly correlated fourth-order
Møller–Plesset35 and the coupled-cluster (see, e.g., ref.36) CCSD, and
CCSD(T) approaches. Their findings are of significance both from the prac-
tical and methodological points of view.

Among the methodological aspects addressed by Cremer et al., of special
interest are their extensive studies of the fundamental problem concerning
the ability of DFT to cover the dynamic and non-dynamic correlation ef-
fects defined in ab initio approaches. A very comprehensive attempt of link-
ing the WFT definitions of non-dynamic and dynamic correlation with the
understanding of electron correlation effects in DFT has been undertaken
by Neumann, Nobes and Handy8. These studies were essentially concerned
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with defining an optimum exchange functional for the purpose of under-
standing uniquely the content of the exchange-correlation and correlation
functionals and included an examination of various properties of ex-
change-correlation potentials and calculations of energies and geometrical
parameters of various molecules. These authors have argued that the corre-
lation functionals should include only dynamic correlation effects, whereas
exchange functionals should include the non-dynamic correlation effects,
i.e., they should give predictions which are close to the CASSCF 37 ones. To
achieve such a situation, it has been suggested to model good exchange
functionals on a system for which there is effectively no non-dynamic cor-
relation such as the Ne atom.

In turn, the conclusions by Cremer et al.33,34, made in density distribu-
tion studies involving many of the commonly used exchange-correlation
and exchange-only functionals, are that the latter functionals include
lower-order WFT correlation effects while the correlation ones represent the
higher-order correlation effects. The authors also suggest that, in currently
used DFT functionals, the non-dynamic correlation effects are simulated in
an unspecified way by the exchange correlation functionals. To improve
the situation they suggest developing properly self-interaction-corrected
(SIC) functionals (for recent results and references see, Cremer et al.38).

Let us just mention that an approach not based on comparison of energy
increments has been very recently24,25 used by the present authors in their
attempts to compare several KSOs (which are considered to account for cor-
relation effects) with BOs and HF orbitals. Our approach is based on a direct
comparison of various subspaces spanned by these orbitals.

The main aim of this paper is to present some results of our studies on
the efficiency of several types of KSOs in carrying over to the WFT informa-
tion about the structure of correlation effects that are useful for the im-
provement of the efficiency of ab initio approaches. These results are based
on calculations for the Ne atom. This system appears to be especially suited
for our studies for several reasons: First, Ne is one of the few systems whose
correlation effects are almost entirely dynamic8,39. Hence, from the point
of view of WFT, we have to deal with the simplest structure of correlation
effects. Second, for noble gas atoms presumably exchange and correlation
effects are almost independent. Such findings have been made both in
energy-based (see, e.g., ref.8) and density-distribution-based31 studies.
Third, since we have to deal with an S state, we do not face the angular
symmetry problems arising for states with L > 0, recently studied by Fertig
and Kohn40. Fourth, due to the symmetry just mentioned, a comparison of
density distributions can be made in one dimension and is far simpler than
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for molecules where comparisons are predominantly based on density dif-
ference maps.

We will base our studies on the analysis of difference radial electron den-
sities defined with respect to the Hartree–Fock (HF) radial density. Within
the DFT approach, we consider densities for exchange-correlation and
exchange-only potentials, which are selected to represent all the presently
used types of functionals, including the recently developed orbital-
dependent functionals. These results are compared with WFT density distri-
butions represented by MP2 and MP3 response densities and the density
corresponding to the Brueckner determinant, which, as we have mentioned
above, is expected to be close to the accurate one. This comparison should
be helpful in getting more insight into the role of exchange and correlation
functionals in simulating dynamic correlation effects.

These density-based considerations will be supplemented by a discussion
of the structure of the KSOs corresponding to the functionals considered in
terms of indices characterizing their similarity to Brueckner and HF orbital
which have been defined in our recent studies24,25.

METHOD AND COMPUTATIONAL ASPECTS

We shall consider the difference radial charge densities (DRCD), d rω
A ( ), de-

fined for a given subshell or shell of electrons, denoted by ω with respect to
the corresponding Hartree–Fock densities as

d r D r D rω ω ω
A A HF( ) ( ) ( )= − (1)

where D rω
A ( ) denotes the radial charge density obtained within the approach

“A”, i.e.,

D r r rω ωπ ρA A( ) ( )= 4 2 (2)

and ρω
A ( )r stands for the spherical average of the electronic charge density

ρω
A ( )r . The D rω

A ( ) functions have been frequently used in atomic shell struc-
ture studies (for references, see, e.g., refs41,42). For each method considered,
the use of d rω

A ( ) allows for a direct monitoring of the changes with respect
to the HF densities, which is helpful in the discussion of the impact of the
correlation effects accounted for by this method. For the DFT methods we
calculate the densities from the KSOs, which makes it possible to consider
both orbital and total densities. The WFT densities are represented by the
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MP2 and MP3 response densities and by the BO densities. Notice that only
in the latter case we can obtain orbital densities.

We have calculated radial densities for sets of KSOs corresponding to vari-
ous exchange-correlation and exchange-only potentials and for the set of
BOs. We consider the KSOs generated for the following standard xc-
functionals (the acronyms are identical with those employed in Gaussian
98 and in the literature): (i) at the local potential level we use the SVWN5
xc-functional consisting of the Slater approximation of the exchange en-
ergy43 and the correlation energy formulas of Vosko, Wilk and Nusair44

(SVWN5); (ii) at the gradient-corrected level we consider the BLYP func-
tional (Dirac’s exchange with Becke’s (B88) gradient correction7 plus the
Lee–Yang–Parr (LYP) correlation45) functional); (iii) the hybrid functionals
are represented46 by the B3LYP functional which is a mixture of 20% of the
exact exchange functional and the SVWN5 and BLYP xc-functionals. We
also consider the BHandHLYP potential (as defined in the Gaussian 98 47

documentation) containing a mixture of the exact, Slater, and B88 ex-
change functionals and the LYP correlation term. We have also employed
the exchange-only functionals referred to as B3ex and BHHex functionals
which are obtained from the B3LYP and BHandHLYP ones, respectively, by
omitting the correlation terms. The set of KSOs corresponding to widely
used functionals is complemented by the orbital sets representing the very
recently developed ab initio DFT approaches. On the exchange-only level,
the orbitals correspond to the optimized orbital potentials (OEP), first con-
sidered within the framework of WFT half a century ago48,49, which have
been implemented into the DFT during the last decade (see, e.g., refs50–53).
In turn on the exchange-correlation level, we are concerned with KSOs rep-
resenting the recent developments in DFT based on the orbital-dependent
exchange and correlation functionals (see, e.g., refs9–12). In this work we use
the one of the functionals of the OEP-MBPT(2) approach developed by
Grabowski et al.12, viz. the OEP-MBPT(2)-f version described in detail by
Bartlett et al.54 All orbitals, except the KSOs corresponding to orbital-
dependent functionals, have been generated by means of the Gaussian 98
system of programs47. The latter orbitals have been obtained when using
the ACES II suite of programs55. In all calculations, we employed an uncon-
tracted ROOS-ATZP basis56 consisting of 95 Gaussian primitives.

For comparing the KS, HF, and BO orbital sets considered, we have em-
ployed indices characterizing distances between pairs of equidimensional
subspaces spanned by these orbitals (for details, see refs24,25). These indices
are defined in terms of the magnitudes of the determinant of the mixed-
overlap matrices as
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D P= −2 1( ) (3)

where P = |det M|, with (M)ij = 〈ψi|ϕi〉 where ψi and ϕj are members of the ba-
sis sets spanning the subspaces of the pair.

It is convenient to scale the index defined in Eq. (3) with respect to the
reference distance representing the distance between the subspaces
spanned by the HF orbitals and the BOs. These distances are referred to as
relative distances. Moreover, since the similarity of BOs and KSOs has been
attributed to their ability to describe some correlation effects, we have also
calculated the indices for the distances of the KS and HF orbital subspaces.
The indices for the KSO–BO (KSO–HF) pairs are labeled by “B” (or “H”). For
the BO–HF pair we use the label “B–H”.

For the individual levels of comparison we use the notation (the tilde de-
notes relative indices):

1. On the level of individual orbitals labeled by κ:

~
,

~
.d

d

d
d

d

d
κ

κ

κ
κ

κ

κ

B
B

B – H

H
H

B – H
= = (4)

2. On the level of subspaces spanned by the subsets of orbitals of the
symmetry specification ω:

~
,

~
.D

D

D
D

D

D
ω

ω

ω
ω

ω

ω

B
B

B – H

H
H

B – H
= = (5)

3. On the level of determinants constructed from doubly occupied
orbitals:

~
,

~
.X

X
X

X
X

X
B

B

B H

H
H

B H
= =

− −
(6)

For the convenience of discussion, we include in the table just the KSO–BO
distances and their ratios to the KSO–HF distances:

k
d

d
k

D

D
k

X

X
Xκ

κ

κ

ω
ω

ω

= = =
~

~ ,
~

~ ,
~

~ .
B

H

D
B

H

B

H
(7)

If these ratios are smaller than unity, it is reasonable to consider the sets of
KS orbitals to be more similar to the BOs than to the HF orbitals.
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RESULTS AND DISCUSSION

Radial Density Distributions for Ne

We shall show the results of our calculations in graphical form. In Fig. 1 we
present the total radial density distribution, D rtot

HF ( ), for Ne calculated for the
uncontracted ROOS-ATZP basis. This density distribution provides reference
values for all the difference radial electron density distributions, Eq. (1), dis-
played in Figs 2–5. The maxima of the K and L shell radial densities are at
r = 0.105 and 0.650 a.u., respectively. The position of the minimum, at r =
0.307 a.u., provides a partitioning into core and valence regions. Let us no-
tice that this position is the same for all the densities calculated in these
studies.

For a discussion of the charge redistribution (with respect to the HF refer-
ence) for the individual methods considered, we define in each case three
or four regions limited by r-values corresponding to zeros of the DRCD dis-
tributions, d ω

A . Region I ranges from r = 0 to r � 0.14 a.u. and strongly over-
laps with the K shell region including the area defining the maximum of
the K shell. Region II ranges from r � 0.14 to r � 0.5 a.u. and includes, al-
most in the middle, the core-valence partitioning point. Therefore, it might
be considered as approximately representing the intershell region. Region
III ranges from r � 0.5 to r � 1.5 a.u. and includes the maximum of the L
shell distribution. We refer to this region as the inner-valence-shell region.
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Radial charge density distribution for Ne, D rtot

HF( ), calculated for the Hartree–Fock determinant



Region IV ranges from r � 1.5 a.u. to infinity and is referred to as the
outer-valence-shell region.

The difference radial total charge densities defined by Eq. (1), obtained
for the WFT (d rtot

BO ( ), d rtot
MP2 ( ), d rtot

MP3 ( )) and for the DFT d rtot
xc ( ) methods (where

“xc” indicates that the complete xc-potential has been used) are displayed
in Fig. 2. We find significant differences in the overall shape of the curves.
A comparison of our WFT density distributions with the results of Meyer et
al.57, who studied the impact of electron correlation on radial electron den-
sities using the MRCI-SD method in very large basis sets, shows a close simi-
larity to the MP3 distribution.

Note that all curves representing WFT densities are inside the DFT curves.
The best ab initio representation of all the DFT densities is provided by
the MP2 one. The closest resemblance is found for the MP2 and the
OEP-MBPT(2)-f curves. The similarity is almost as close as for the MP2 and
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FIG. 2
Difference radial charge density distributions for Ne, d rtot

A ( ), for the MP2, MP3, and
Brueckner-determinant WFT methods and for the Kohn–Sham orbitals corresponding to the
SVWN5, BLYP, B3LYP, and OEP-MBPT(2)-f exchange-correlation functionals



B3LYP curves, in which case the larger disagreement is noticed in the
intershell region. The disagreement between the MP2 and DFT curves is
most pronounced for the SVWN5 and BLYP densities. Our experience with
the structure of electron correlation in Ne makes us to believe that the rela-
tive density curve would be between the MP3 and MP2 density curves.
Therefore, our assessment of the relative ability of the various DFT ex-
change correlation functionals to mimic WFT correlation effects seems to
be reliable.

An interesting feature of the curves in Fig. 2 is that all of them define the
main charge shift (relative the HF charge distribution) from the inner-
valence-shell region (III) either to the outer-valence-shell (IV) or to the
intershell (II) regions. For the DFT methods there is also a minor charge dis-
placement from the core (I). A quantitative description of the charge shifts
is given in Table I. One sees from that table that the displacement from re-
gion III is larger for the DFT densities than for the WFT ones. The largest
shifts of about 0.1e correspond to the local and gradient-corrected func-
tionals. The shifts are smaller for the hybrid and orbital-dependent func-
tionals. It might be of some interest to note from Table I that, irrespective
of the magnitude of the charge shifted from region III, about 80% goes to
region IV. Hence, all our WFT and DFT density distributions confirm the
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A ( ), the Brueckner
orbitals and for the Kohn–Sham orbitals generated for the SVWN5, BLYP, B3LYP, and
OEP-MBPT(2)-f exchange-correlation functionals



exceptional behavior found by Meyer et al.57 that for N and Ne, unlike for
other second row atoms, inclusion of electron correlation entails an in-
crease in the atomic size. The present results do not seem to confirm the
findings of de Proft and Geerlings58 that introducing electron correlation
leads to an increase in the number of electrons in the core region. In the
light of Fig. 2, we would rather attribute this increase to the intershell
region.

To get a more detailed insight into the charge distribution in the core re-
gion, we illustrate in Fig. 3 the relative radial charge distribution for the 1s
electrons, d1s(r). In this case the only WFT density available is the BO 1s-
density, which differs only slightly from the HF one. We find significant
differences between these orbital densities. By far the largest deviation from
the HF density is found for the SVWN5 approach, which explains the rela-
tively large charge displacement from the core region indicated in Table I.
The density profiles obtained for the BLYP and B3LYP functionals are simi-
lar and deviate significantly from the OEP-MBPT(2)-f one.

To gain a better understanding of how the ab initio correlation effects are
simulated by the exchange and correlation functionals, we have calculated
the DRCD curves for DFT densities for exchange-only functionals, d tot

x , cor-
responding to the xc-functionals discussed above. These curves are dis-
played in Fig. 4 together with the WFT curves already shown in Fig. 2. For
the Slater (S), B88, and B3ex exchange-only potentials, the curves resemble
strongly the corresponding xc-potential curves given in Fig. 2. In both cases
we have to deal with the same regions of charge depletion and accumula-
tion. The main difference consists in the magnitudes of the charge dis-
placed from region III to region IV, which is slightly larger for the B88 and
B3ex potentials and significantly larger for the S potential. These results

Collect. Czech. Chem. Commun. (Vol. 70) (2005)

1168 Jankowski et al.:

TABLE I
Electron charge displacements relative the HF charge distribution (in a.u.)

Regiona BD MP2 MP3 SVWN5 BLYP B3LYP OEP-MBPT(2)-f

I – – – –0.008 –0.001 –0.002 –

II 0.007 0.010 0.008 0.026 0.024 0.021 0.011

III –0.038 –0.057 –0.041 –0.100 –0.103 –0.048 –0.075

IV 0.031 0.048 0.034 0.082 0.081 0.060 0.064

a Regions are defined as follows: I, vicinity of the nucleus; II, intershell; III, inner-valence-
shell; IV, outer-valence-shell.



clearly indicate that the densities obtained for representatives of the widely
used local, gradient-corrected, and hybrid exchange-only potentials ac-
count for the bulk of WFT correlation effects.

The situation is radically different for the OEP exchange-only (OEPX) po-
tential, where the d tot

x curve is extremely close to the abscissa, which is a
consequence of using the optimized exchange potential designed to closely
simulate the HF exchange potential48,49.

To answer some questions concerning the role of the c-functionals in
covering the WFT correlation effects, we show in Fig. 5 plots representing
the effect of these functionals on the density distributions. The curve for
the LYP functional represents the difference of the charge distributions for
the BLYP and B88 functionals. Mention must be made that almost identical
curves have been obtained for the SLYP – S as well as for the BHandHLYP –
BHHex differences, which confirms the belief (see, e.g., ref.8) that exchange
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FIG. 4
Difference radial charge density distributions for Ne, d rtot

A ( ), for the MP2, MP3, and
Brueckner-determinant WFT methods and for the Kohn–Sham orbitals generated for the
SVWN5, BLYP, B3LYP, and OEPX exchange-only functionals



and correlation effects for closed-shell atoms are almost independent. The
plot representing the LYP correlation effects shows that for Ne these effects
are rather small and lead to an enhanced density in the inner-valence-shell
region, which is not in line with the findings by Cremer et al.33,34 who in
their molecular studies ascribed this enhancement to the core region. It is
apparent from Fig. 5 that the plot representing the impact of the LYP po-
tential is completely different from the MP2 and MP3 plots, which might
suggest that the LYP correlation functional represents higher-order correla-
tion effects, as postulated by Cremer34 in the discussion of molecular re-
sults. Taking into account the way the LYP functional has been derived, it
is difficult for the present authors to accept this suggestion for the closed-
shell Ne atom.

One can also see in Fig. 5 that the curve representing the impact of the
OEP-MBPT(2)-f correlation functional, obtained as the difference of the
OEP-MBPT(2)-f and OEPX density distributions, fairly resembles the MP2
distribution. Hence, charging the correlation functional with the task of
complete representation of dynamic correlation effects would require de-
signing of exchange functionals providing an extremely accurate descrip-
tion of the exchange-correlation (Fermi) hole. This point of view is in line
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FIG. 5
Comparison of difference radial charge density distributions, d rtot

A ( ), for the MP2 and MP3
methods with the differences ∆LYP ≡ −d r d rtot

BLYP
tot
B88( ) ( ) and ∆OEP ≡ −d r d rtot

OEP- MBPT(2) -f
tot
OEPX( ) ( ) repre-

senting the impact of the LYP and OEP-MBPT(2)-f correlation functionals



with the reasoning of Neumann, Nobes and Handy8 who designated for
this role the Becke–Roussel59 exchange functional.

Comparison of Kohn–Sham and Brueckner Orbitals

The similarity indices characterizing the distances of subspaces spanned by
the KSOs, BOs, and HF orbitals are displayed in Table II. The table includes
only potentials that differ in the exchange part because we have demon-
strated in ref.24 that for potentials that differ only in the correlation part,
the indices take close values.

The KSOs, BOs, and HF orbitals corresponding to the lowest energy are
practically indistinguishable, which is consistent with the difference densi-
ties shown in Fig. 3. This closeness causes that the BO–HF reference dis-
tance is extremely small and the corresponding indices might be consider-
ably affected by numerical errors. Therefore, the table does not include the
1s indices. Let us just mention that the relative magnitudes of the

~
d1s

B indi-
ces are consistent with the density differences displayed in Fig. 2. For the
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TABLE II
Comparison of the indicesa characterizing distances of subspaces defined by various Kohn–
Sham orbitals from corresponding subspaces defined by Brueckner and by Hartree–Fock
orbitals generated for the Ne atom

Functional
~
d2s

B k2s
~
Ds

B ks
D ~

d2p
B k2p

~
XB kx

SVWN5 2.71 0.77 2.96 0.79 1.55 0.61 1.68 0.64

S 3.20 0.79 2.42 0.71 2.33 0.70 2.42 0.71

BLYP 1.68 0.64 1.83 0.66 1.88 0.66 1.88 0.66

B88 1.87 0.66 2.15 0.69 2.16 0.69 2.15 0.69

B3LYP 1.15 0.55 1.29 0.59 1.13 0.54 1.15 0.54

B3ex 1.41 0.60 1.52 0.63 1.46 0.60 1.47 0.60

BHandHLYP 0.23 0.19 0.45 0.35 0.32 0.25 0.33 0.26

BHex 0.53 0.37 0.59 0.41 0.47 0.33 0.48 0.33

OEP-MBPT(2)-f 0.96 0.50 1.06 0.53 0.97 0.49 0.98 0.50

Reference values for
the BO–HF pair

0.004833 0.004846 0.010361 0.026301

a The indices
~
d κ

B (κ = 2s, 2p),
~
Ds

B , and
~
XB are defined by Eqs (4), (5), and (6), respectively. All

k-ratios are defined by Eq. (7).



remaining orbitals, we find that
~
d κ

B ≤ 3.2. These indices take the largest val-
ues for the local and the gradient-corrected potentials, decreasing when
proceeding to the hybrid potentials. The minimum of the KSO–BO orbital
distances is attained for the BHandHLYP xc-potential for which this dis-
tance is much smaller than for the B3LYP hybrid potential.

On all levels of comparison, the KSO–BO distances for the local and
gradient-corrected potentials are considerably larger than the correspond-
ing BO–HF reference distances, i.e., the KSOs differ more from the BOs than
do the HF orbitals. To a smaller extent, such a situation takes place even for
the B3LYP hybrid potentials. Only for the BHandHLYP potential we find
that the KSOs are significantly closer than the HF orbitals to the BOs, which
indicates that the increase in the admixture of the exact exchange from 20%
to 50% results in a strong modification of the form of the KSOs.

The decrease in the KSO–BO distance indices when proceeding from the
local to the hybrid potentials has been rationalized24 by the reduction of
the errors in the asymptotic of these potentials. Instead of an exponential
vanishing for the local potentials, we have to deal with an 1/nr (n >1) van-
ishing for the hybrid ones, which is the closest to the 1/r decrease in the
exact potential. However, the indices corresponding to the asymptotically
correct OEP-MBPT(2)-f are larger than for the BHandHLYP potential. This
fact indicates that the asymptotic correctness of the KS potential is not a
sufficient condition for the similarity of the KSOs and BOs.

A comparison of the indices for KSOs generated for each of the exchange-
correlation potentials with their counterparts obtained for the exchange-
only potentials reveals in all cases an increase in the latter ones. The rela-
tive increase is most pronounced for the BHandHLYP potential. This in-
crease, however, does not modify the differences found at the xc-potential
level for various generations of potentials. Hence, the structure of the KSO
is essentially defined by the exchange-only functional. Inclusion of the cor-
relation potential modifies the shape of the KSOs to a limited extent, mov-
ing them closer to the BOs. Hence, the BOs represent, on the WFT level,
correlation effects described on the DFT level by both the exchange and
correlation potentials. An improvement of the similarity of KSOs and BOs
should be, first of all, achieved by improving the exchange potential, by ad-
justing it to a reliable description of the exchange hole.

In closing this discussion, we would like to emphasize that on all the
levels of comparison, we can see in Table II that the k-indices take values
smaller than unity, i.e., the KSO–BO distances are smaller than the KSO–HF
ones. They reach their minima for the BHandHLYP potential.
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CONCLUSIONS

The efforts of bridging the methodological gap between the wave function
theory (WFT) and density functional theory (DFT) that would afford carry-
ing over some intermediate results are shortly reviewed. Special attention
is paid to the problem of coverage of the WFT correlation effects by the
exchange-correlation functionals of DFT. A short survey of the concept of
supplementing energy-based investigations in this field by electron-density
based studies is given and illustrated by results of calculations of the radial
density distribution for the Ne atom.

We have calculated DFT radial electron density distributions for represen-
tatives of all four generations of presently used exchange-correlation func-
tionals, including the recently developed orbital-dependent OEP-MBPT(2)-f
functional12. These density distributions have been compared with WFT
densities calculated at the MP2, MP3, and Brueckner determinant levels.

The present results indicate that the exchange-only parts of the widely
used local, gradient-corrected, and hybrid functionals account for the bulk
of WFT correlation effects. The impact of the associated correlation func-
tionals on the density distributions is rather marginal, and an understand-
ing of the physical content of these functionals requires further studies.

A different behavior has been disclosed for the orbital-dependent func-
tional, for which the exchange-only component yields an almost exact
Hartree–Fock density. Now, the correlation effects are entirely represented
by the correlation functional and there is a clear understanding of its physi-
cal content.

We have also been concerned with a continuation of our recent studies24

on the efficiency of Kohn–Sham orbitals (KSOs) in carrying over to WFT the
information on the structure of correlation effects. This efficiency has been
related to the presumptive similarity of KSOs and Brueckner orbitals21

(BOs). It is found that BOs like KSOs describe mainly the correlation effects
that are accounted for in DFT by the exchange-only functionals. Hence,
BOs represent “correlation effects” in a more general sense than considered
in quantum chemistry.

We realize that electron-density-distribution based investigations for
molecules provide a more comprehensive insight into details that are of in-
terest for DFT practitioners than studies limited to atomic systems. How-
ever, a large variety of details, the necessity of using a more-than-one-
dimensional representation of the density distributions, and the basis set
effects seem to be obstacles preventing the identification of the require-
ments to be made for the DFT functionals to obtain a well defined represen-
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tation of the most important WFT correlation effects. Therefore, noble-gas
atoms, for which these obstacles are reduced to a minimum, seem to be
better suited than molecules at early stages of systematic searches for new
generations of functionals enabling the transfer of intermediate results be-
tween WFT and DFT.

We hope that the present preliminary results will contribute to recogni-
tion of the potentiality of electron-density-distribution studies for closed-
shell atoms as a means helpful in the search for effective and transparent
methods of describing ab initio correlation effects in DFT.

This work was supported in part by the Committee for Scientific Research (KBN) through grant
No. 4 T09A 187 25.
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